1. Minyuan Y, et al. N-acetylcysteine for chronic kidney disease: a systematic review and meta-analysis. Am J Transl Res. 2021;13(4):2472-85.
2. Hernandez-Cruz EY, et al. N-acetylcysteine in Kidney Disease: Molecular Mechanisms, Pharmacokinetics, and Clinical effectiveness. Kidney Int Rep.2024 https://doi.org/10.1016/j.ekir.2024.07.020
3. Yamauchi A, Ueda N, Hanafusa S, Yamashita E, Kihara M, Naito S. Tissue distribution of and species differences in deacetylation of N-acetyl-L-cysteine and immunohistochemical localization of acylase I in the primate kidney. J Pharm Pharmacol. 2002;54:205–212. https://doi.org/10.1211/0022357021778394
4. Lash LH. Role of glutathione transport processes in kidney function. Toxicol Appl Pharmacol. 2005;204:329–342. https://doi.org/10.1016/j.taap.2004.10.004
5. Tomás-Simó P, D’Marco L, Romero-Parra M, et al. Oxidative stress in non-dialysis-dependent chronic kidney disease patients. Int J Environ Res Public Health. 2021;18:7806. https://doi.org/10.3390/ijerph18157806
6. Vida C, Oliva C, Yuste C, et al. Oxidative stress in patients with advanced CKD and renal replacement therapy: the key role of peripheral blood leukocytes. Antioxidants (Basel). 2021;10:1155. https://doi.org/10.3390/antiox10071155
7. Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M, et al. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic Biol Med. 1996;21: 845–853. https://doi.org/10.1016/0891-5849(96)00233-x
8. Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J, Scholze A. Nrf2 activation in chronic kidney disease: promises and pitfalls. Antioxidants (Basel). 2022;11:1112. https://doi.org/10.3390/antiox11061112
9. Nezu M, Souma T, Yu L, et al. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression. Kidney Int. 2017;91:387–401. https://doi.org/10.1016/j.kint.2016.08.023
10. Rubio-Navarro A, Vázquez-Carballo C, Guerrero-Hue M, et al. Nrf2 plays a protective role against intravascular hemolysis-mediated acute kidney injury. Front Pharmacol. 2019;10:740. https://doi.org/10.3389/fphar.2019.00740
11. Juul-Nielsen C, Shen J, Stenvinkel P, Scholze A. Systematic review of the nuclear factor erythroid 2-related factor 2 (NRF2) system in human chronic kidney disease: alterations, interventions and relation to morbidity. Nephrol Dial Transplant. 2022;37:904–916. https://doi.org/10.1093/ndt/gfab031
12. Leal VO, Saldanha JF, Stockler-Pinto MB, et al. NRF2 and NFkB mRNA expression in chronic kidney disease: a focus on nondialysis patients. Int Urol Nephrol. 2015;47:1985–1991.https://doi.org/10.1007/s11255-015-1135-5
13. Shen J, Rasmussen M, Dong QR, Tepel M, Scholze A. Expression of the NRF2 target gene NQO1 is enhanced in mononuclear cells in human chronic kidney disease. Oxid Med Cell Longev. 2017;2017:9091879. https://doi.org/10.1155/2017/9091879
14. Rasmussen M, Hansen KH, Scholze A. Nrf2 protein serum concentration in human CKD shows a biphasic behavior. Antioxidants (Basel). 2023;12:932. https://doi.org/10.3390/antiox12040932
15. Zeng J, Davies MJ. Protein and low molecular mass thiols as targets and inhibitors of glycation reactions. Chem Res Toxicol. 2006;19:1668–1676. https://doi.org/10.1021/tx0602158
16. Bollong MJ, Lee G, Coukos JS, et al. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature. 2018;562:600–604. https://doi.org/10.1038/s41586-018-0622-0
17. Aparicio-Trejo OE, Reyes-Fermín LM, Briones-Herrera A, et al. Protective effects of N-acetyl-cysteine in mitochondria bioenergetics, oxidative stress, dynamics and S-Glutathionylationnalterations in acute kidney damage induced by folic acid. Free Radic Biol Med. 2019;130:379–396. https://doi.org/10.1016/j.freeradbiomed.2018.11.005
18. Allen MR, Wallace J, McNerney E, et al. N-acetylcysteine (NAC), an anti-oxidant, does not improve bone mechanical properties in a rat model of progressive chronic kidney disease-mineral bone disorder. PLoS One. 2020;15: e0230379. https://doi.org/10.1371/journal.pone.0230379
19. Kandel R, Singh KP. Higher concentrations of folic acid cause oxidative stress, acute cytotoxicity, and long-term fibrogenic changes in kidney epithelial cells. Chem Res Toxicol. 2022;35:2168–2179. https://doi.org/10.1021/acs. chemrestox.2c00258
20. Aparicio-Trejo OE, Avila-Rojas SH, Tapia E, et al. Chronic impairment of mitochondrial bioenergetics and b-oxidation promotes experimental AKI-to-CKD transition induced by folic acid. Free Radic Biol Med. 2020;154:18–32. https://doi.org/10.1016/j.freeradbiomed.2020.04.016
21. Yu P, Luo J, Song H, et al. N-acetylcysteine ameliorates vancomycin-induced nephrotoxicity by inhibiting oxidative stress and apoptosis in the in vivo and in vitro models. Int J Med Sci. 2022;19:740–752. https://doi.org/10.7150/ijms.69807
22. Guo M, Chen Q, Huang Y, et al. High glucose-induced kidney injury via activation of necroptosis in diabetic kidney disease. Oxid Med Cell Longev. 2023;2023:1–14. https://doi.org/10.1155/2023/2713864
23. Dong W, Zhang K, Gong Z, et al. N-acetylcysteine delayed cadmium-induced chronic kidney injury by activating the sirtuin 1-P53 signaling pathway. Chem Biol Interact. 2023;369:110299. https://doi.org/10.1016/j.cbi.2022.110299
24. Abdelrazik E, Hassan HM, Abdallah Z, Magdy A, Farrag EA. Renoprotective effect of N-acetylcystein and vitamin E in bisphenol A-induced rat nephrotoxicity; modulators of Nrf2/F-KB and ROS Signaling Pathway. Acta Biol Med. 2022;93:e2022301. https://doi.org/10.23750/abm.v93i6.13732
25. Holt S, Goodier D, Marley R, et al. Improvement in renal function in hepatorenal syndrome with N-acetylcysteine. Lancet. 1999;353:294–295. https://doi.org/10.1016/s0140-6736(05)74933-3
26. Hilmi IA, Peng Z, Planinsic RM, et al. N-acetylcysteine does not prevent hepatorenal ischaemia-reperfusion injury in patients undergoing orthotopic liver transplantation. Nephrol Dial Transplant. 2010;25:2328–2333. https://doi.org/10.1093/ndt/gfq077
27. Maiwall R, Kumar A, Bhadoria AS, et al. Utility of N-acetylcysteine in ischemic hepatitis in cirrhotics with acutenvariceal bleed: a randomized controlled trial. Hepatol Int.2020;14:577–586. https://doi.org/10.1007/s12072-020-10013-5
28. Sheikh-Hamad D, Timmins K, Jalali Z. Cisplatin-induced renal toxicity: possible reversal by N-acetylcysteine treatment. J Am Soc Nephrol. 1997;8:1640–1644. https://doi.org/10.1681/ASN.V8101640
29. Nisar S, Feinfeld DA. N-acetylcysteine as salvage therapy in cisplatin nephrotoxicity. Ren Fail. 2002;24:529–533. https://doi.org/10.1081/jdi-120006780
30. Renke M, Tylicki L, Rutkowski P, et al. The effect of N-acetylcysteine on proteinuria and markers of tubular injury in non-diabetic patients with chronic kidney disease. A placebo-controlled, randomized, open, cross-over study. Kidney Blood Press Res. 2008;31:404–410. https://doi.org/10. 1159/000185828
31. Rasi Hashemi S, Noshad H, Tabrizi A, et al. Angiotensin receptor blocker and N-acetyl cysteine for reduction of proteinuria in patients with type 2 diabetes mellitus. Iran J Kidney Dis. 2012;6:39–43.
32. Rouhi H, Ganji F. Effects of N-acetyl cysteine on serum lipoprotein (a) and proteinuria in type 2 diabetic patients. J Nephropathol. 2013;2:61–66. https://doi.org/10.5812/nephropathol. 8940
33. Liao CY, Chung CH, Wu CC, et al. Protective effect of Nacetylcysteine on progression to end-stage renal disease: necessity for prospective clinical trial. Eur J Intern Med. 2017;44:67–73. https://doi.org/10.1016/j.ejim.2017.06.011